Potential contribution of anammox to nitrogen loss from paddy soils in Southern China.

نویسندگان

  • Xiao-Ru Yang
  • Hu Li
  • San-An Nie
  • Jian-Qiang Su
  • Bo-Sen Weng
  • Gui-Bing Zhu
  • Huai-Ying Yao
  • Jack A Gilbert
  • Yong-Guan Zhu
چکیده

The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to "Candidatus Brocadia" and "Candidatus Kuenenia" and two novel unidentified clusters were detected, with "Candidatus Brocadia" comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 10(4) to 9.65 × 10(4) copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 10(6) Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils

Anaerobic ammonium oxidation (anammox) is a globally important nitrogen-cycling process mediated by specialized microbes, and has been demonstrated to be ubiquitous in anoxic natural settings and bioreactors. However, our knowledge of its prevalence in different paddy soil types and along the depth profiles remains largely undocumented. Here, mesocosm incubations were constructed to investigate...

متن کامل

Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils

Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S ...

متن کامل

Anaerobic ammonium oxidation (anammox) in different natural ecosystems.

Anammox (anaerobic ammonium oxidation), which is a reaction that oxidizes ammonium to dinitrogen gas using nitrite as the electron acceptor under anoxic conditions, was an important discovery in the nitrogen cycle. The reaction is mediated by a specialized group of planctomycete-like bacteria that were first discovered in man-made ecosystems. Subsequently, many studies have reported on the ubiq...

متن کامل

Comparison of pedogenic properties of some paddy and nonpaddy soils of southern Iran

ABSTRACT- Paddy soils make up the largest anthropogenic wetlands on earth. Present study was performed to investigate and compare soil formation of paddy soils with long-term rice cultivation history with non-paddy soils and study the effect of waterlogging on soil pedogenesis. Soil samples were taken from paddy and non-paddy soils derived from the same calcareous parent materials. Some pedogen...

متن کامل

Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.

Fertilization affects bacterial communities and element biogeochemical cycling in flooded paddy soils and the effect might differ among soil types. In this study, five paddy soils from Southern China were subjected to urea addition to explore impacts of fertilization on nitrogen oxide (N2O) emission and bacterial community composition under the flooding condition. 16S rRNA gene-based illumina s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2015